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A SPECTRAL METHOD WITH STAGGERED GRID FOR
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
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SUMMARY

In order to solve the Navier—Stokes equations by spectral methods, we develop an algorithm using a
staggered grid to compute the pressure. On this grid, an iterative process based on an artificial compressibility
matrix associates the pressure with the continuity equation. This method is very accurate and avoids
naturally most of the effects of parasite modes appearing in classical spectral methods with a velocity—
pressure formulation.
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INTRODUCTION

When solving the incompressible Navier—Stokes equations for an inhomogeneous flow, difficulties
arise during pressure computation. There are two classical ways of solving these problems.

The first one consists of taking the divergence of the momentum equation and using the
continuity equation; we obtain a Poisson equation for the pressure. The unknowns are coupled by
boundary conditions for the pressure (normal component of the momentum equation). Some
compatibility conditions have to be satisfied to avoid singularities at the first time step.'-2

The second one consists of solving simultaneously the momentum equation and the continuity
equation.®>* We have made some tests, and the results obtained on the Stokes problem are better
with the second technique.?

Morchoisne®'® has built a technique with an operator joining up the pressure with the velocity
divergence on the same grid. This method can be compared with the influence matrix method.”
Some parasite modes for the pressure are found and have to be ‘filtered” whichever numerical
method is used.®

The purpose of the present paper is to solve the two-dimensional Navier—Stokes equations with
a staggered grid; we use an iterative process with an approximation of the operator connecting
pressure to velocity divergence. With the staggered grid, seven of the eight parasite modes seem to
be naturally eliminated (the constant mode remains).

The studied problem is presented; then the method is developed and an application to the
regularized square cavity probiem is given.

PROBLEM STATEMENT

Consider the two-dimensional Navier—Stokes problem defined in a square domain Q for a viscous
incompressible fluid. The equations are
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Momentum equation

du
ke VP —(U-V)U + vAU, Vte[0,T], VxeQ=]-—1, +1[2 1
Continuity equation
V-U=0, Vte[0,T], VxeQ=]-1,+1[% 2
Boundary conditions
U=U,, VxedQ, Vte[0,T]. 3)

Initial conditions satisfying boundary conditions (3)

U=U,, t=0 VYxeQ. 4
The velocity U is defined at the classical Chebyshev grid points ( x on Figure 1). Their co-
ordinates are
n(i—1) n(j—1)
x,-=cos<Nx_l>, yj:COS(Ny—l , (5)

where N, and N, are the number of discretization points in the x and y directions, respectively.
The momentum equation (1) is solved on that grid with boundary conditions (3).

The pressure P is defined at the staggered Chebyshev grid points (- on Figure 1). Their co-
ordinates are

2i—1 2j—
X;= COS <;((Nl—_1))>, y; = cos <%> (6)
18y
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Figure 1. Staggered grid with Chebyshev collocation points (example: N, = N, = 5)
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The continuity equation (2) is solved on the grid with (N, — 1) x (N, — 1) points and without
boundary conditions for the pressure P.

NUMERICAL SCHEME

To solve the problem defined by equations (1)—(4), a second-order finite-difference discretization in
time and a spectral discretization in space are used.

Discretization

The convection and diffusion terms in equation (1) are treated in the same way by an Adams—
Bashforth scheme. For inhomogeneous flows, with no-slip boundary conditions, the stability of
that scheme is ensured by these boundary conditions.® As explicit schemes require very small time
steps for stability, an implicit treatment is introduced. The computation is performed in two steps;
the first one is written

L.L(U—-UY)=6[3H"—3H"" ' —VP"], (7
and the second one is
L.L,U"* 1L_0)= —-étv(P+t — P7), (8)
where
2
H"= —(U"-V)U"+vAU", with v=—1, 9
and Re
02 0?
Lx=l_'75)?5 Ly=1_”W7
with
n = 0(vét, U?5t2). (10)

L, and L, are implicit operators, that are approximated by centred finite-difference schemes as
follows:

2 fiori fiors
| #2 k¥4 LS A i+ 1) , 11
axqi,,-# [hi(hi Fhies) Biies st ) v
. L 2% f]
where h; = x;_; — x;. The same kind of relation is used for 57
i

U(equation (7))is a predictor for the velocity U"*!. Equation (8) is solved on the classical grid. The
coefficient H"(equation (9)) is calculated by a collocation method, with the derivatives computed
by formal derivation expansions in Chebyshev polynomials of the first kind.!®

The pressure P is determined on the staggered grid and later computed by means of Chebyshev
extrapolation on the classical grid.

By extrapolation we shall mean a process to obtain values on the classical grid from those on the
staggered grid and by interpolation a process to obtain values on the staggered grid from those on
the classical grid.

Velocity—pressure computation

The direct process to compute the pressure is the following: by multiplying equation (8) by
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(L L,)~ ", we obtain
Ut — U= —6t(L, L) V(P"*! — P). (12)

By taking the divergence of equation (12), and because equation (2) has to be satisfied at time
n+ 1, we obtain

V-U=06V(L,L,)"'V(P""! = P"). (13)

where V-(L,L,)”'V = 4 is the operator connecting variations of pressure to velocity divergence.
The pressure variation is obtained by solving equation (13) on the staggered grid, namely

n+1 )
A(P P = &V (14)

Exact computation of this pressure variation would give a velocity at time (n + 1) satisfying the
continuity equation.

The square matrix A has [(N,— 1) x (N, — 1)]* elements (for example, if N, = N, =33, the
matrix contains 1,048,576 elements). It is so large that we can only solve equation (14) by an
iterative process using a matrix B. This new matrix is built with a small number of A diagonals. Bis
then modified to become an approximate factorized .#.% matrix.!* This point is explained in the
next section.

So, at each time level, pressure will be obtained as the limit of a sequence of approximations:

P'6+1"'P?+1—>P"+1.
The iterative process stops when the velocity divergence, computed from equation (12), is
smaller than a given value .
The pressure is determined by a relaxation process. Other methods could be used such as

gradient methods.
At iteration /, equation (14) becomes (with L. U # A)

PP P"“)— VU AP+t — pn),

And, by means of equation (12), we obtain

1
LAUPH - P = VUL (15)
So the pressure is obtained on the staggered grid by
1
P;l 11=P"+1+O'{[$ %]—1[5 U"+1:|} (16)
where ¢ is an under-relaxation coefficient.
The pressure P}f! is then computed on the classical grid by means of a Chebyshev
extrapolation.
Finally, U} ! is computed by solving the system
LU = 0)= —otv(Pi*! — P, 17)

taking into account the boundary conditions on the velocity.
Because the operators L, and L, are centred finite-difference schemes (equation (11)),
equation (17) gives a tridiagonal system, easily solved on the classical grid.
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Figure 2. Program organization: [__] computation on classical grid;@computation on staggered grid;

——=> extrapolation; = interpolation

Figure 2 gives the program organization. A test is added at the end to see whether the problem
(see the section on the ‘square cavity’ regularized problem) has become stationary.
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COMPUTATION OF THE ARTIFICIAL COMPRESSIBILITY MATRIX 4

Computation of the matrix A

The matrix 4 is computed numerically column by column with the following technique: we set

Q'(x;) = (18)
where §;; is the Kronecker delta symbol; we then compute D' so that
AQi =D\, (19)

It contains the (N, — 1) x (N, — 1) elements of the ith column in the matrix A. Figure 3 gives
the numerical technique for the calculation of the matrix A.

L, and L, are approximated by centred finite-difference schemes with five points (equation (11)};
the operator V is approximated by spectral technique by means of Chebyshev polynomials of
the first kind.

This very large matrix A with [(N, — 1) x (N, — 1)]? elements is singular. Only seven parasite
modes are removed with the staggered grid. The constant mode is kept.

Staggered grid Classical grid
Q! Extrapolation q

y‘oi

(LxLy)* 7@
AQ Interpolation V.(LxLy)' ¥ Qi

Figure 3. Matrix 4 computation scheme

Approximation of the matrix A by the matrix B

The matrix B is calculated by analogy with finite-difference schemes. Two possibilities are
chosen:

1. Only the principal diagonal of 4 is kept for building B. In that case, equation (14) is solved
directly without % -% factorization.

2. The other possibility is to keep five diagonals of 4. These diagonals correspond to the five
points of the finite-difference scheme:

ij+1

The matrix B is presented in Figure 4.
Only 5(N,— 1)(N, — 1) words are used for computer storage of the matrix B.

Approximate £+ factorization

To solve equation (15) we use an approximate . -# factorization of B. For each triangular



A SPECTRAL METHOD WITH STAGGERED GRID 181

Column Ny

(Nx — 1).(Ny ~ 1)

Line Ny —m
lines

(Nx — 1}.{Ny — 1) columns

Figure 4. Matrix B with five diagonals

matrix, £: lower or %: upper, a tridiagonal form is chosen. Figure 5 shows the decomposition.
Each matrix contains three diagonals. All main diagonal elements of % are 1.!!

Column Ny Column Ny

B # £ . w

Figure 5. Matrix B: approximate factorized % matrix
Iterative process convergence

To obtain values of the parameters n and 6, we study, numerically, the convergence of the

Table I. Convergence parameters

Re=2, N,=N,=9
n 107! 1072 1073
o 01 01-0-8 01
Re =200, NN, =17
n 1071 1072 1073

c 01 01-06  01-05
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iterative process at the first time step of the computation of the square cavity regularized problem.
Two cases are considered:Re = 2 and Re = 200, with two forms for the %% matrix by analogy
with finite-difference schemes: one diagonal and five diagonals.

Table I gives the various values of 7 and ¢ for which convergence is obtained with five diagonals
for the ¥ +% matrix. We have observed that the convergence is quickly reached for a value of the
implicit parameter n equal to 10~ 2. In this case, the under-relaxation parameter ¢ varies between
0-1 and 0-6 for Re = 200.

For a one-diagonal matrix B, the results are not very different. So it seems that the number of
diagonals is not a determinant factor of the n parameter.

SQUARE CAVITY REGULARIZED PROBLEM

To test the above algorithm, we compute the stationary solution for a viscous flow in a two-
dimensional square cavity with the following regularized boundary conditions:

U=V=0forx=1 or x=-—1, Vye[—1,+1]Jand fory=—1, Vxe[—-1,+1],
UgsU=—(1—x*)?fory=+1, Vxe[—1,+1],

V=0. (20)
The initial conditions are chosen such as:
Uy=—(1—=x>1 + y)/2
U Uo=—U=)1 42 o
Vo=0, Yix,yye[—1, +1]°

This initial field satisfies boundary conditions but not continuity (equation (2)).
The stationary solution is obtained when the time derivative |0U/dt| is less than a threshold 7:

n+1

<1 (22)

For the iterative process, the convergence threshold is ¢ = 107°. The stationary solution is
obtained for t = 10~ 5. The other parameters are defined in Table II.

One- and five-diagonal cases for 4 have been studied. The computation for the one diagonal case
is 40 per cent more expensive than for the five-diagonal case, because many iterations are necessary

Table II. Computation parameters used for the square
cavity regularized problem

Number of
N, diagonals
N, Re ot o n in matrix B.
9 2 107* 09 1072
1
17 200 107 07 1072
9 2 1072 08 15x1077
S

17 200 1072 06 1072
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A @ (0. y).L
u{0,1) Various times
204 -—— Stationary solution (t = 36)
—-— t=0.02
h ———t=232

Figure 6. Time history of the vorticity along the axis x =0 in a square cavity at Re=200and N, =N, =17

for the iterative process convergence when the matrix B contains only one diagonal.

Results are given for a five-diagonal matrix computation.

Figure 6 shows the non-dimensional vorticity w(0, y)L/U(0, 1) (L = 2 is the cavity side length)
on the central vertical axis, for various times up to the stationary solution ¢ = 36. The Reynolds
number is Re = 200 and the space discretization is N, = N, = 17. In Figure 7, isovorticity lines
are presented for the same computation case.

A comparison between the pseudo-spectral space—time method and the present method is
given in Figure 8.3-1° There is a very good agreement between these two methods.

Remark

A Chebyshev extrapolation has been used for drawing the picture of the pseudo-spectral
space-time method. It is the main reason of the difference between the two figures (Figure 8).

PRESSURE RESULTS FOR THE SQUARE CAVITY

Figure 9 shows isobar lines with a space discretization of 16 x 16 points for the stationary
solution. No parasite oscillation appears. Yet, a spurious mode exists in the pressure
decomposition.!?2

In the method described above, the pressure is expanded in a series of Chebyshev polynomials
of the first kind as
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t=10.02 t=232

t=t; =36

Figure 7. Time history of iso-vorticity lines in a square cavity at Re=200 and N, =N, =17
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Figure 8. Comparison with the pseudo-spectral space-time method for a square cavity at Re =200 and N, = N, =17
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0.040

T4

Figure 9(a). Isobar lines in a square cavity at Re = 200and N, = N, = 17. Stationary solution: — 0-06 < pressure < +0-15
with steps of 0-005; ..cocceneeens negative pressure; —~—----- ZEro pressure; positive pressure

-1m

Y

Figure 9(b). Enlargement of the square region at the top left of Figure 9(a). Key as for Figure 9(a)

m=0

M M
P(X,J’) = Z ZO am‘nTm(x)’I;n(y)- (23)

The spurious mode is the (M, M) harmonic of the pressure expansion in series of Chebyshev
derivative polynomials T,,(x) T, (y) as
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P(x,y)= Z Z b Ton(X) To(y)- (24)

m=0n=0
Classical properties of Chebyshev polynomials give the relation
1

byu=-—7a
M.M M-1,M-1:
4M?

(25)

For example, the numerical values of by, ,, are the foliowing:
bgg =107 big16=4x 1075

As soon as the discretization M is high (M > 16), the value of the spurious mode is too small
to induce parasite oscillations.

Arbitrarily, we have modified the a,,_, 4, _, harmonic at t =0-01 (¥ in Figure 10) and at t =45
(@ in Figure 10). The pollution appears as a constant on odd harmonics a,;, ; ,;+, only. Figure 11
shows isobar lines of the stationary solution with a modification of the a,,_; » -, harmonic at
t=001.

The pressure gradient and the velocity are not modified even if the pressure expansion presents
a chequerboard harmonic.

CONCLUSION

The above iterative algorithm for computing the pressure gives very accurate results.

This way of determining pressure by solving the continuity equation is consistent with the
Navier—Stokes problem in which boundary and initial conditions are only given for the velocity. In
our present case, no boundary conditions are necessary for the pressure.

To improve the efficiency of the method, we could use a more elaborated algorithm for iterative
calculation of pressure: ‘steepest descent’, the ‘Axelsson algorithm’, etc.

Computation on a staggered grid for the velocity divergence avoids most of the effects of parasite
modes that appear in the classical velocity—pressure formulation and gives us results with a
spectral accuracy.

NOTATIONS
A artificial compressibility matrix
B approximate matrix of A
L square cavity side length (L =2)
Lx,Ly implicit operators: L, =1 —#d*/0x*,L, =1 —nd*/dy*
LU approximate factorized matrix of B
NN, number of discretization points on x and y axes, respectively
P pressure
Re Reynolds number: Re = U(0, 1)L/v=2/v
U velocity vector with two components (U, V)
X position vector with two components (x, y)
ot time-step length
A Laplacian operator: A = §%/0x* + 0%/0y?
& convergence threshold for the iterative process
n implicit operators parameters
v kinematic viscosity
o relaxation coefficient
T convergence threshold for the stationary solution
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Figure 11(a). Isobar lines in a square cavity at Re =200 and N, = N,=17. Stationary solution after amplification at
t =001: —0-06 < pressure < + 0-15 with steps of 0-005; ------ negative pressure; — — — Z€ro pressure;
pressure

positive

-m
r,

Figure 11(b). Enlargement of the square region, at the top left of Figure 11(a). Key as for Figure 11(a)

REFERENCES

1. M. Deville, L. Kleiser and F. Montigny-Rannou, ‘Pressure and time treatment for Chebyshev spectral solution of a
Stokes problems.’ Int. j. numer. methods fluids, 4, 1149-1163 (1984).



A SPECTRAL METHOD WITH STAGGERED GRID 189

R. L. Sani, P. M. Gresho, R. L. Lee and D. F. Griffiths, ‘The cause and cure (?) of the spurious pressures generated by
certain FEM solutions of the incompressible Navier—Stokes equations: part I, Int. j. numer. methods fluids, 1, 17-43
(1981).

. F. Montigny-Rannou, ‘Influence of compatibility conditions in numerical simulation of inhomogeneous incompre-

ssible flows’, Proceedings of the fifth GAMM Conference on Numerical Methods in Fluid Mechanics, Rome, October
1983; in M. Pandolfi and R. Piva (eds), Notes on Numerical Fluid Mechanics, Vol. 7, Vieweg, 1984.

. M. R.Malik, T. A. Zang and M. Y. Hussaini, ‘A spectral collocation method for the Navier—-Stokes equations’, Journal

of Computational Physics, 61 (1), 64—88 (1985).

. Y. Morchoisne, ‘Résolution des équations de Navier—Stokes par une méthode de sous-domaines spectraux’, 3éme

Conférence Internationale sur les Méthodes Numériques de I'Ingénieur GAMNI, Paris 14-16 March 1983.

. Y. Morchoisne, ‘Inhomogeneous flow calculations by spectral methods: mono-domain and multi-domain techniques’,

in R. G. Voigt, D. Gottlieb and Y. Hussaini (eds), Spectral Methods for Partial Differential Equations, SIAM,
Philadelphia, 1984.

. L. Kleiser and U. Schumann, ‘Treatment of incompressibility and boundary conditions in 3-D numerical spectral

simulations of plane channel flows’, Proceedings of the Third-Gamm Conference on Numerical Methods in Fluids
Mechanics; in E. H. Hirschel (ed.), Notes on Numerical Fluid Mechanics, Vol. 2, Vieweg, 1980.

. C. Bernardi, Y. Maday and B. Métivet, ‘Une méthode directe de collocation pour le probléme de Stokes’, Compte-

Rendus Académie des Sciences, Paris, 1302, série I, no. 4, 163166, 1986.

. Y. Maday, B. Pernaud-Thomas and H. Vandeven, ‘Une réhabilitation des méthodes spectrales de type Laguerre’, La

Recherche Aérospatiale, 1985-6, 353-275 (1985).

. Y. Morchoisne, ‘Résolution des équations de Navier—Stokes par une méthode pseduo-spectrale en espace-temps’, La

Recherche Aérospatiale, 1979-5, 293306 (1979). English Translation—ESA TT-613.

. D. S. Kershaw, ‘The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear

equations’, Journal of Computational Physics, 26, 43-65 (1978).

. C. Bernardi and Y. Maday, ‘A staggered grid spectral method for the Stokes problem’, 6iéme Colloque International sur

la simulation d’écoulements par éléments- finis, INRIA-Antibes, 16-20 June 1986.





